Вирусные взаимодействия
Feb. 8th, 2025 10:29 pm![[personal profile]](https://www.dreamwidth.org/img/silk/identity/user.png)
Disturbed respiratory viral ecology by COVID-19 pandemic reveals the pivotal role of Influenza in virus-virus interaction network
Concurrent epidemics of respiratory viruses provide avenues for intricate virus-virus interactions, yet how molecular-level viral interactions patterns shape viral ecology and epidemic dynamics remain enigmatic. Here, we present real-world virus crosstalk by comprehensively analyzing diagnostic data from a large cohort (37,415 respiratory illness cases pre-COVID-19 pandemic, 22,239 cases thereafter), mainly infants/toddlers, sourced from the same local hospital. Such high-risk group cohort allowed us to examine consistent coinfections among 7 respiratory viruses, despite under an overall reduced infection rates due to COVID-19 disruption. We explored drivers of stable ecosystem and identified a directional virus-virus interaction network between influenza and other respiratory viruses. Monthly prevalence patterns analysis of individual virus revealed IAV positively interacted with RSV, characterized by synchronous seasonality (ρ= 0.67). Conversely, IAV negatively interacted with HPIV3, marked by asynchronous seasonality (ρ= -0.56). Sequential/simultaneous coinfection experiments further confirmed two viruses could contact in the same cell but show distinct coinfection outcomes, such as IAV significantly augmented RSV infection but inhibited HPIV3. We further demonstrated coinfection with IAV and RSV led to exacerbated lung damage in mice, while were associated with aggravated disease outcomes among children. Post-COVID-19, we observed a notable suppression in the spread of respiratory viruses, with a particularly sharp decline in influenza. This reduced influenza activity disrupted virus interactions between influenza and other respiratory viruses, driving the concurrent resurgence of other respiratory viruses. When influenza gradually returns to circulation, the interactions could be reinstated, shaping respiratory virus circulations in a predictable and typical pattern. These findings underscore the pivotal role of influenza in directional interplays among respiratory viruses that shape viral ecology.

Concurrent epidemics of respiratory viruses provide avenues for intricate virus-virus interactions, yet how molecular-level viral interactions patterns shape viral ecology and epidemic dynamics remain enigmatic. Here, we present real-world virus crosstalk by comprehensively analyzing diagnostic data from a large cohort (37,415 respiratory illness cases pre-COVID-19 pandemic, 22,239 cases thereafter), mainly infants/toddlers, sourced from the same local hospital. Such high-risk group cohort allowed us to examine consistent coinfections among 7 respiratory viruses, despite under an overall reduced infection rates due to COVID-19 disruption. We explored drivers of stable ecosystem and identified a directional virus-virus interaction network between influenza and other respiratory viruses. Monthly prevalence patterns analysis of individual virus revealed IAV positively interacted with RSV, characterized by synchronous seasonality (ρ= 0.67). Conversely, IAV negatively interacted with HPIV3, marked by asynchronous seasonality (ρ= -0.56). Sequential/simultaneous coinfection experiments further confirmed two viruses could contact in the same cell but show distinct coinfection outcomes, such as IAV significantly augmented RSV infection but inhibited HPIV3. We further demonstrated coinfection with IAV and RSV led to exacerbated lung damage in mice, while were associated with aggravated disease outcomes among children. Post-COVID-19, we observed a notable suppression in the spread of respiratory viruses, with a particularly sharp decline in influenza. This reduced influenza activity disrupted virus interactions between influenza and other respiratory viruses, driving the concurrent resurgence of other respiratory viruses. When influenza gradually returns to circulation, the interactions could be reinstated, shaping respiratory virus circulations in a predictable and typical pattern. These findings underscore the pivotal role of influenza in directional interplays among respiratory viruses that shape viral ecology.
